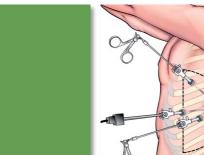


Thoraxchirurgisches Zentrum München Klinik für Allgemein-, Viszeral-, Transplantation-, Gefäß- und Thoraxchirurgie Klinikum der Ludwigs-Maximilians-Universität München

Klinik für Thoraxchirurgie Asklepios Fachkliniken München-Gauting

Lungenoperationen – Welche Methoden kommen wann zum Einsatz


18. Patientenforum Lunge

Thoraxchirurgisches Zentrum München Prof. Dr. Rudolf Hatz

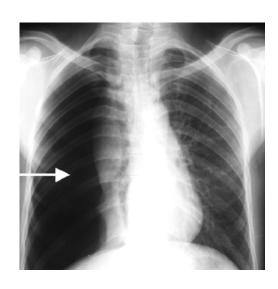
Die 10 weltweit häufigsten zum Tode führenden Erkrankungen

1990

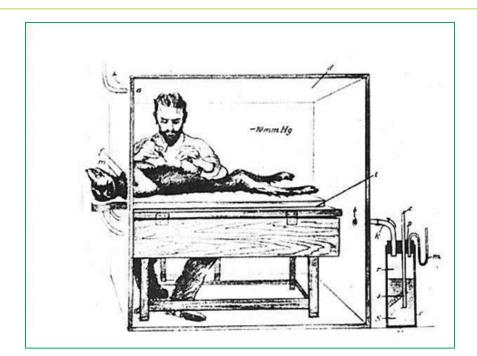
- 1. Herzkranzgefäße
- 2. Schlaganfall
- 3. Lungenentzündung
- 4. Durchfallerkrankung
- 6. COPD
- 6. COPD
- 7. T uberkulose
- 8. Masern
- 10. Lungenkrebs
 - 10. Lungenkrebs

2020

- 1. Herzkranzgefäße
- 2. Schlaganfall
- 3. COPD
- 4. Lungenentzündung
- 5. Lungenkrebs
- 6. Verkehrsunfall
- 7. Tuberkulose
- 8. Magenkrebs
- 9. HIV / AIDS
- 10. Selbstmord



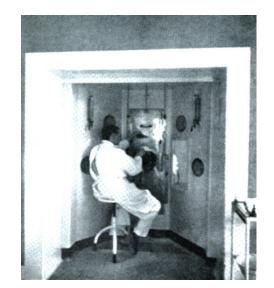
Highlight



Entwicklung des Druckdifferenzverfahrens

F. Sauerbruch: "Über die Ausschaltung der schädlichen Wirkung des Pneumothorax bei intrathorakalen Operationen" Mittel. A. d. Grenzgeb.der Medizin und Chirurgie, 13:399, 1904

Pneumothorax



Highlight die Unterdruckkammer

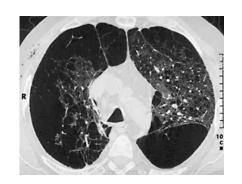
Ferdinand Sauerbruch 1918 - 1928 "Geburtsstunde der modernen Thoraxchirurgie"

Unterdruckkammer Nussbaumstraße

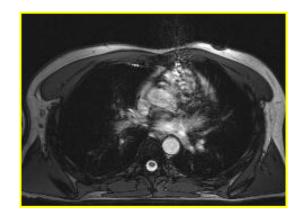
Ziele Chirurgie des Emphysems

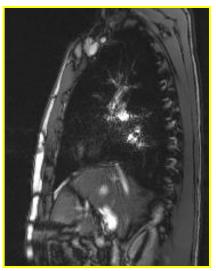
Palliation mit verbesserter Lebensqualität

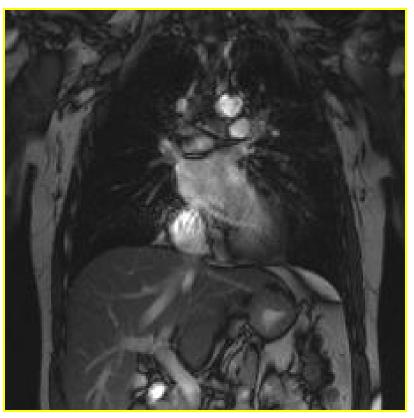
Lebensverlängerung


Folgen des Lungenemphysems

- Fassthorax
- abgeflachtes Zwerchfell mit aufgehobener bis paradoxer Beweglichkeit
- Kompression funktionstüchtigen Lungengewebes durch Überblähung





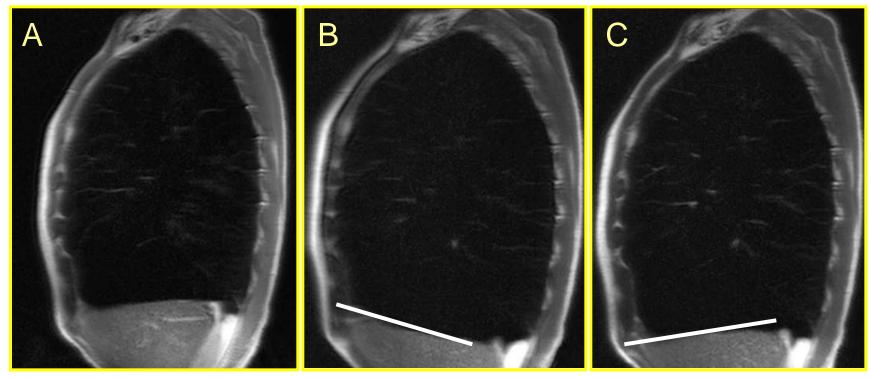

Normale Atemmechanik

- Elevation des Sternums
- Bewegung des Zwerchfells nach unten
- Rippenbewegung nach außen



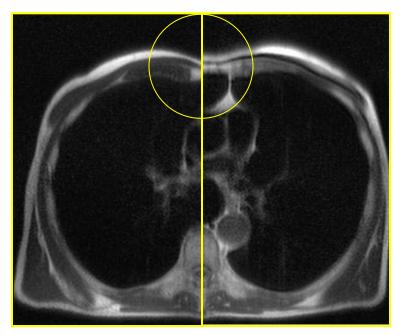
- paradoxic ,,bouncing" of diaphragm
- flattening and motion-limited, lowered diaphragm

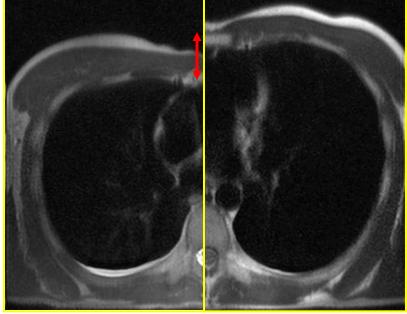
Mediastinales Flattern und "bouncing"



"Bouncing" Zwerchfell

Inspiration

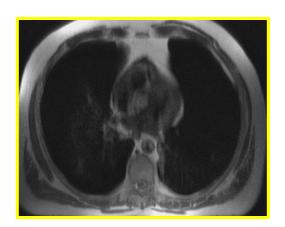

Exspiration

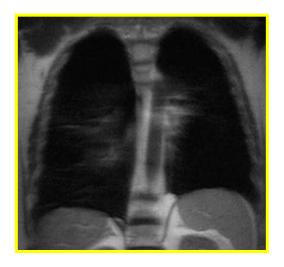


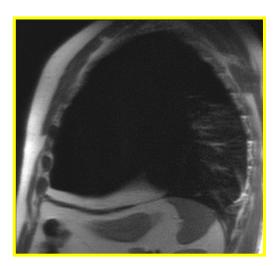
Eingeschränkte Sternumbewegung

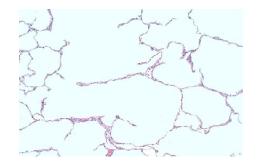
Patient mit Emphysem

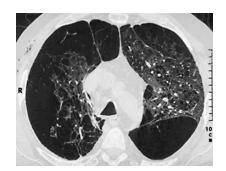
Patient mit normaler Lunge




Heterogenes Emphysem "target lesions"

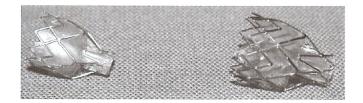




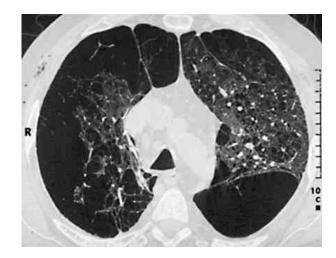


Ziele der Lungenvolumenreduktion (LVRS)

- Normalisierung der Konfiguration von Zwerchfell und Thoraxwand zur Optimierung der Atemarbeit
- Dekompression normalen Lungengewebes zur Erhöhung der Elastizität ("elastic recoil") mit Steigerung der expiratorischen Flußrate und Verbesserung des Verhältnisses zwischen perfundierten und ventilierten Lungenanteile.

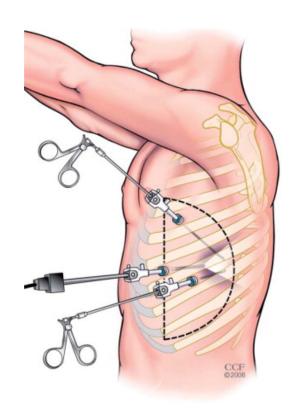


Endoskopische Verfahren


Stentventile

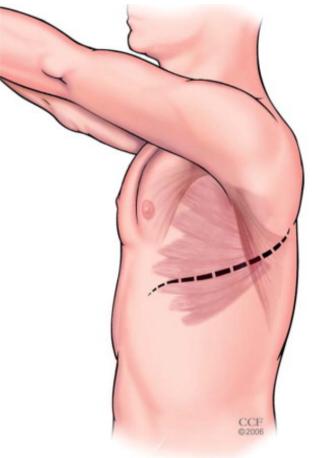
Zephr

	Authors						
	Yim et al. [39]	Toma et al. [37]	Venuta et al. [40]	Snell et al. [36]			
No. pts	21	8	13	10			
Valves/pts	4	3	4	6.7			
FEV ₁ pre (l)	0.73	0.79	0.75	0.72			
FEV ₁ 1 month (l)	0.84	1.06	1.1	0.74			
p value	ns	0.028	0.01	ns			
RV pre (l)	4.98	6.82	5.3	4.2			
RV 1 month (l)	4.85	NA	4.8	4.2			
p value	ns	NA	0.01	ns			
TLC pre (l)	7.03	NA	7.9	6.81			
TLC 1 month (l)	6.5	NA	7.1	6.72			
p value	ns	NA	0.04	ns			
DLCO pre	8.00	3.05	33%	7.47			
DLCO 1 month	9.18	3.92	45%	8.26			
p value	ns	0.01	0.01	0.04			
FVC pre (l)	1.94	NA	1.86	2.33			
FVC 1 month (l)	2.12	NA	2.3	2.34			
p value	ns	NA	ns	ns			
6MWT pre (m)	251.6	NA	223	340			
6MWT post (m)	306.3	NA	375	346			
p value	0.01	ns	0.005	ns			

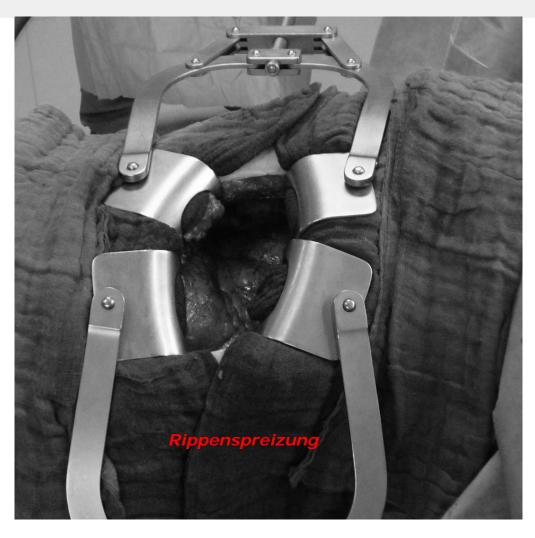


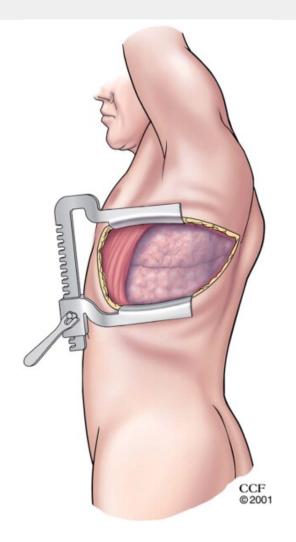
HIGHLIGHT VATS VIDEOASSISTIERTE THORAKOSKOPIE

- Pneumothorax
- Pleuraerguß
- unklarer Lungenrundherd
- mediastinale Raumforderung
- Pleuraempyem
- Neurinom
- Pleuracarcinose
- Pleuramesotheliom
- Lungenkarzinom
- LVRS



Offener Zugang Lobektomie Anterolaterale Thorakotomie

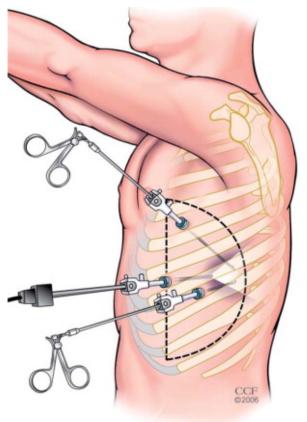



KLINIKUM

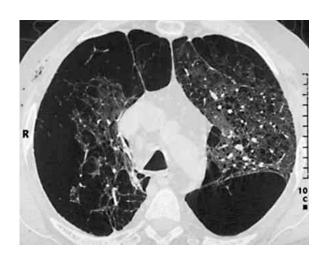
DER UNIVERSITÄT MÜNCHEN

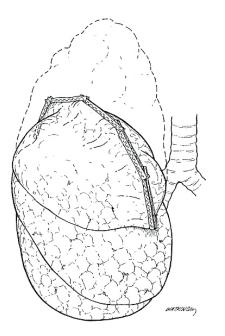
ANTEROLATERALE THORAKOTOMIE MIT RIPPENSPREIZER

MINIMAL-INVASIVER ZUGANG



DIE SCHONENDE ALTERNATIVE: KLEINE INZISION MIT GEWEBESCHUTZ



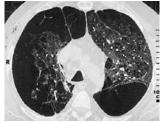


Operatives Vorgehen

VATS

unilateral bilateral

Resektion 20 – 30% des Lungenvolumens



Indikationen zur LVRS

- Emphysem im Stadium III bis IV nach GOLD
 - FeV₁ zwischen 20% und 40% vom Soll, DCLO > 20%
 - TLC > 130%
 - RV > 180%
- Inhomogenes, apikal-betontes heterogenes Emphysem (Lungenszinti, CT-Thorax)

- Eingeschränkte Atemmechanik: Zwerchfellbeweglichkeit < 2,5cm
- Leidensdruck des Patienten

Präoperative Untersuchungen vor LVRS

- Röntgen Thorax in zwei Ebenen in In- und Expiration
- Lungenfunktion und Ergospirometrie
- Lungenszintigrafie mit Quantifizierung
- HR-CT
- Belastungs-EKG
- 6 Minuten Gehtest

Alle Patienten erhalten eine 4 - 6 wöchige Rehabilitation präoperativ

Einschlusskriterien zur LVRS

- Nichtraucher für mindestens 4 Monate
- pCO2 < 50 Torr (55 Torr)
- pulmonalarterieller Druck < 40mm Hg
- Patient mobil und für Reha compliant
- 18 < Body Mass Index (BMI) < 30
- keine signifikante KHK

KLINIKUM DER UNIVERSITÄT MÜNCHEN

Prospektiv Randomisierte Studie

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

MAY 22. 20

VOL. 348 NO. 2

A Randomized Trial Comparing Lung-Volume–Reduction Surgery with Medical Therapy for Severe Emphysema

National Emphysema Treatment Trial Research Group*

Characteristic	Surgery Group (N=608)	Medical-Therapy Group (N=610) 66.7±5.9		
Age at randomization — yr	66.5±6.3			
Race or ethnic group — no. (%)				
Non-Hispanic white	581 (96)	575 (94)		
Non-Hispanic black	19 (3)	23 (4)		
Other	8 (1)	12 (2)		
Sex — no. (%)†				
Female	253 (42)	219 (36)		
Male	355 (58)	391 (64)		
Distribution of emphysema on CT — no. (%);				
Predominantly upper lobe	385 (63)	405 (67)		
Predominantly non-upper lobe	223 (37)	204 (33) 336 (55)		
Heterogeneous	330 (54)			
Homogeneous	278 (46)	274 (45)		
Perfusion ratio§	0.30±0.21	0.28±0.23		
Maximal workload — W	38.7±21.1	39.4±22.2		
Distance walked in 6 min — ft¶	1216.5±312.6	1219.0±316.0		
FEV ₁ after bronchodilator use — % of predicted value	26.8±7.4	26.7±7.0		
Total lung capacity after bronchodilator use — % of predicted value	128.0±15.3	128.5±15.0		
Residual volume after bronchodilator use — % of predicted value	220.5±49.9	223.4±48.9		
Carbon monoxide diffusing capacity — % of predicted value	28.3±9.7	28.4±9.7		
PaO ₂ — mm Hg	64.5±10.5	64.2±10.1		
PaCO ₂ — mm Hg	43.3±5.9	43.0±5.8		
Total score on St. George's Respiratory Questionnaire	52.5±12.6	53.6±12.7		
Average daily Quality of Well-Being score**	0.58±0.12	0.56±0.11		
Total UCSD Shortness of Breath score††	61.6±18.1	63.4±18.6		

Intention to treat analysis (N= 3777)

N = 1218 randomisiert

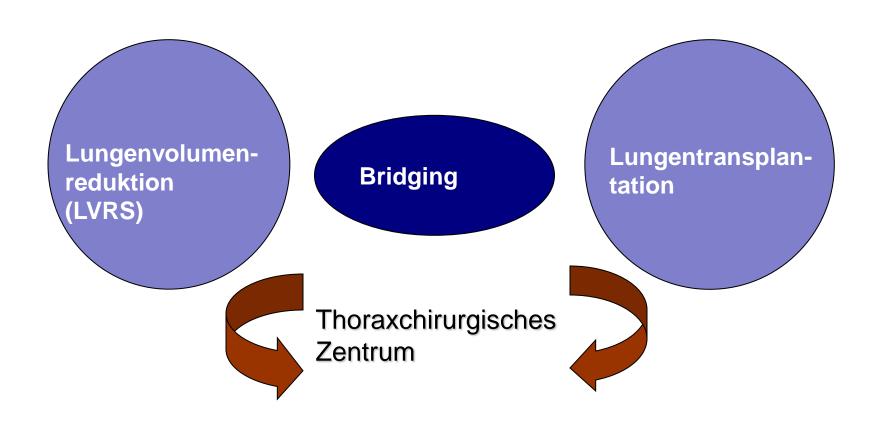
Prospektiv Randomisierte Studie

Patients	Improvement in Exercise Capacity			Improvement in Health-Related Quality of Life				
	Surgery Group	Medical- Therapy Group	Odds Ratio	P Value	Surgery Group	Medical- Therapy Group	Odds Ratio	P Value
	no./total no. (%)			no./total no. (%)				
All patients High-risk† Other	54/371 (15) 4/58 (7) 50/313 (16)	1/48 (2)	6.27 3.48 6.78	<0.001 0.37 <0.001	121/371 (33) 6/58 (10) 115/313 (37)	0/48	4.90 — 5.06	<0.001 0.03 <0.001
Subgroups: Predominantly upper-lobe emphysema Low exercise capacity	25/84 (30)	0/92		<0.001	40/84 (48)	0.02 (10)	9 2 9	-0.001
High exercise capacity	17/115 (15)	4/138 (3)	5.81	0.001	40/84 (48) 47/115 (41)	9/92 (10) 15/138 (11)	8.38 5.67	<0.001 <0.001
Predominantly non–upper-lobe emphysema								
Low exercise capacity High exercise capacity	6/49 (12) 2/65 (3)	3/41 (7) 2/59 (3)	1.77 0.90	0.50 1.00	18/49 (37) 10/65 (15)	3/41 (7) 7/59 (12)	7.35 1.35	0.001 0.61

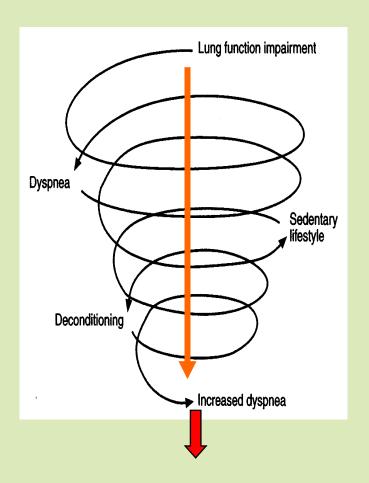
Signifikante funktionelle Verbesserung mit verbesserter Lebensqualität bei apikalem heterogenem Lungenemphysem mit niedriger und hoher Belastungskapazität

Letztes Follow-up 08/2006: 5Jahre Nachbeobachtung

LVRS - Quo vadis


- Etablierte Therapiemodalität des fortgeschrittenen Lungenemphysems mit höchster Evidenz bei selektiertem Krankengut mit echtem Überlebensvorteil
- Anwendung beim heterogenen apikal-betonten Emphysem
- Verwendung als Bridging-verfahren zur Lungentransplantation
- Durchführung im thoraxchirurgischen Zentrum mit entsprechender Erfahrung in der chirurgischen Behandlung des Emphysems (Lungentransplantation und LVRS)

Operative Verfahren beim fortgeschrittenen Lungenemphysem



Chronische Lungenerkrankungen - eine Abwärtsspirale

irreversible Dekompensation - "zu spät…"

Highlight Development of Clinical Lung Transplantation

1940s <u>V. Demirkov:</u> Animal experiments, **technical feasibility**

1963 <u>James D. Hardy:</u> First human lung transplantation

Recipient:

Prisoner, lung cancer, chronic anemia, renal dysfunction,

poor functional status

Able to breathe after surgery, oxygen sat. 98 %

Immunosuppression:

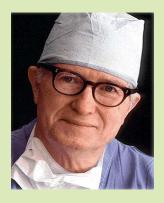
azathioprine, prednisone, cobalt irradiation

Patient died after 18 days: Pneumonia, renal failure

1986 **Joel Cooper**: First **long term success**

Single lung transplantation, 58 year old male, lung fibrosis

Immunosuppression:


azathioprine, **cyclosporine**, low dose prednisone

survived 8 years, died from renal failure

1990 Vaughn A. Starnes: Stanford

First living related lung transplant

lung lobe from mother to twelve year old daughter

James D. Hardy University of Mississippi Medical Center

Joel Cooper Toronto Lung Transplant Group

Pneumologie

1991 Munich Lung Transplant Group

Thoraxchirurgie

MUNICH LUNG
TRANSPLANT GROUP

Anästhesie

Hendrik Dienemann

Herzchirurgie

Bruno Reichart

1991 - 2016

Thoraxchirurgische Zentrum München

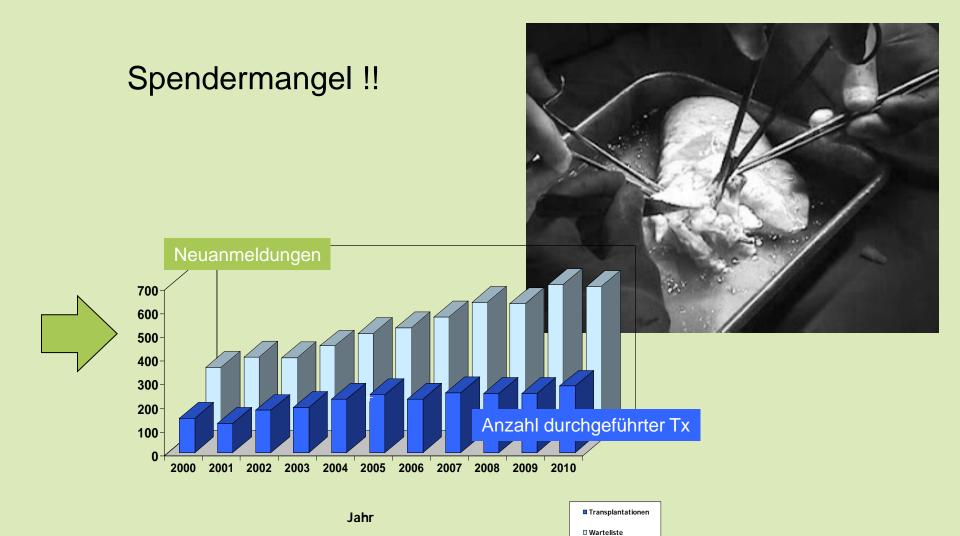
Lungenfachkliniken Gauting/Klinikum der LMU München

Klinik für Herzchirurgie Klinikum Großhadern

Pneumologie

Med Klinik I Großhadern Med Klinik Innenstadt v. Haunersches Kinder Spital Klinik für Intensivmedizin und Langzeitbeatmung Gauting

Institut für Anästhesiologie
Klinikum Großhadern

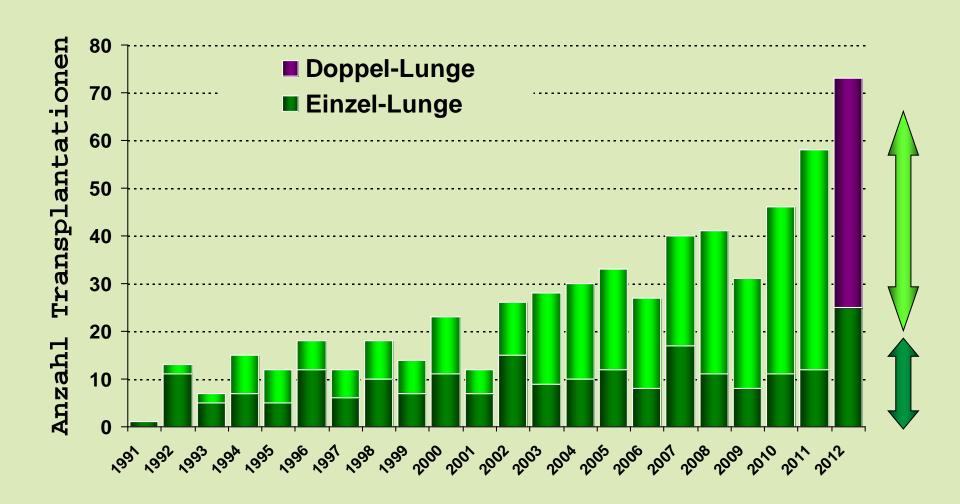


Pneumologie
Med Klinik II
Universitätsklinikum
Regensburg/
Fachklinik
Donaustauf

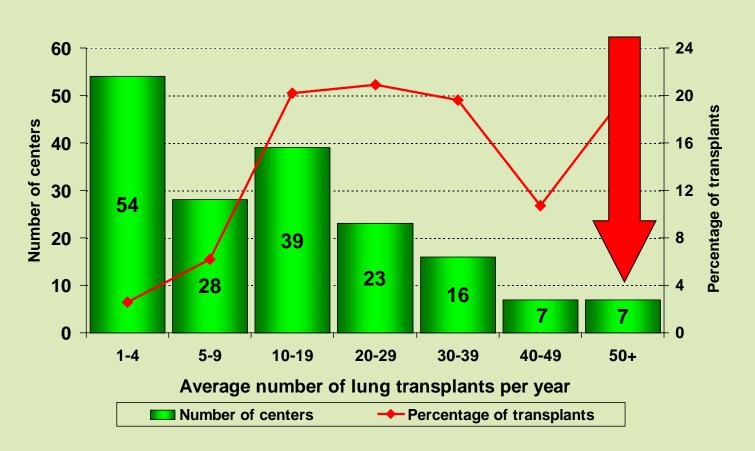
Organspende zur Lungen Tx

Klinische Lungentransplantation heute

International Society of Heart and Lung Transplantation, ISHLT

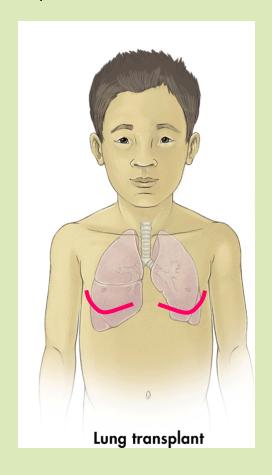


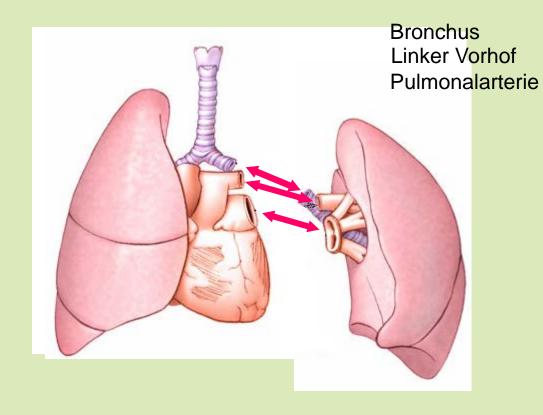
Transplantationen MLTG 1991 –12/2012



Lungentransplantationszentren ISHLT

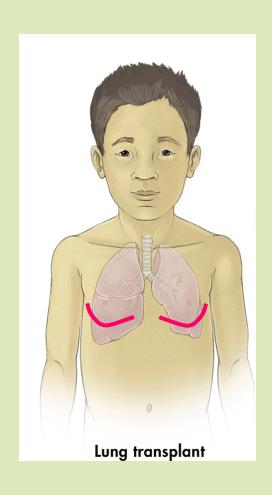
Deutschland: 14 Zentren, 2 Zentren > 50 Tx pro Jahr



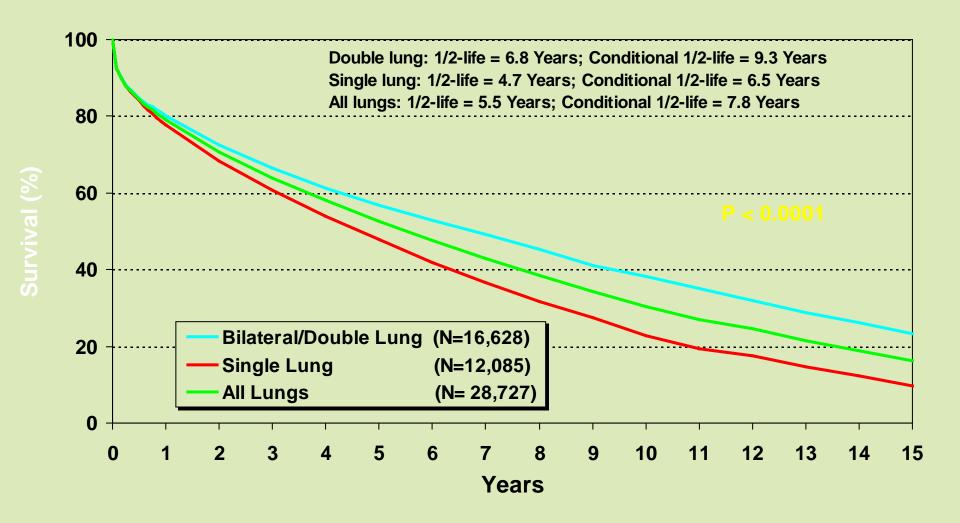


Operationstechnik

antero-laterale Thorakotomie sequentielle bilaterale Thoracotomie



Operationstechnik



Long Term Survival after Lung Transplantation

Thoraxchirurgisches Zentrum München Klinik für Allgemein-, Viszeral-, Transplantation-, Gefäß- und Thoraxchirurgie Klinikum der Ludwigs-Maximilians-Universität München

Klinik für Thoraxchirurgie Asklepios Fachkliniken München-Gauting

Vielen herzlichen Dank für Ihre Aufmerksamkeit!

